Distinct neural circuits establish the same chemosensory behavior in C. elegans

Author:

Banerjee Navonil,Shih Pei-Yin,Rojas Palato Elisa J.,Sternberg Paul W.ORCID,Hallem Elissa A.ORCID

Abstract

AbstractAnimals frequently exhibit the same behavior under different environmental or physiological conditions. To what extent these behaviors are generated by similar vs. distinct mechanisms is unclear. Moreover, the circumstances under which divergent neural mechanisms establish the same behavior, and the molecular signals that regulate the same behavior across conditions, are poorly understood. We show that in C. elegans, distinct neural mechanisms mediate the same chemosensory behavior at two different life stages. Both dauer larvae and starved adults are attracted to carbon dioxide (CO2), but CO2 attraction is mediated by distinct sets of interneurons at the two life stages. Some interneurons mediate CO2 response only in dauers, some show CO2-evoked activity in adults and dauers but contribute to CO2 response only in adults, and some show CO2-evoked activity that opposes CO2 attraction in adults but promotes CO2 attraction in dauers. We also identify a novel role for insulin signaling in establishing life-stage-specific CO2 responses by modulating interneuron activity. Further, we show that a combinatorial code of both shared and life-stage-specific molecular signals regulate CO2 attraction. Our results identify a mechanism by which the same chemosensory behavior can be generated by distinct neural circuits, revealing an unexpected complexity to chemosensory processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3