Patient derived organoids reveal that PI3K/AKT signalling is an escape pathway for radioresistance and a target for therapy in rectal cancer

Author:

Wanigasooriya Kasun,Barros-Silva Joao D.,Tee Louise,El-Asrag Mohammed E.,Stodolna Agata,Pickles Oliver J.,Stockton Joanne,Bryer Claire,Hoare Rachel,Whalley Celina,Tyler Robert,Sillo Tortieju,Yau ChristopherORCID,Ismail Tariq,Beggs Andrew D.ORCID

Abstract

AbstractPartial or total resistance to preoperative chemoradiotherapy occurs in more than half of locally advanced rectal cancer patients. Several novel or repurposed drugs have been trialled to improve cancer cell sensitivity to radiotherapy, with limited success. To understand the mechanisms underlying this resistance and target them effectively, we initially compared treatment-naive transcriptomes of radiation-resistant and radiation-sensitive patient-derived organoids (PDO) to identify biological pathways involved in radiation resistance. Pathway analysis revealed that PI3K/AKT/mTOR and epithelial mesenchymal transition pathway genes were upregulated in radioresistant PDOs. Moreover, single-cell sequencing of pre & post-irradiation PDOs showed mTORC1 upregulation, which was confirmed by a genome-wide CRSIPR-Cas9 knockout screen using irradiated colorectal cancer (CRC) cell lines. Based on these findings, we evaluated cancer cell viability in vitro when treated with radiation in combination with dual PI3K/mTOR inhibitors apitolisib or dactolisib. Significant AKT phosphorylation was detected in HCT116 cells two hours post-irradiation (p=0.027). Dual PI3K/mTOR inhibitors radiosensitised HCT116 and radiation-resistant PDO lines. The PI3K/AKT/mTOR pathway upregulation contributes to radioresistance and its pharmacological inhibition leads to significant radiosensitisation in an organoid model of CRC and is a target for clinical trials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3