Abstract
AbstractMacroscopic oscillations in the brain have been observed to be involved in many cognitive tasks but their role is not completely understood. One of the suggested functions of the oscillations is to dynamically modulate communication between neural circuits. The Communication Through Coherence (CTC) theory establishes that oscillations reflect rhythmic changes in excitability of the neuronal populations. Thus, populations need to be properly phase-locked so that input volleys arrive at the peaks of excitability of the receiving population to communicate effectively. Here, we present a modeling study to explore synchronization between neuronal circuits connected with unidirectional projections. We consider an Excitatory-Inhibitory (E-I) network of quadratic integrate-and-fire neurons modeling a Pyramidal-Interneuronal Network Gamma (PING) rhythm. The network receives an external periodic input from either one or two sources, simulating the inputs from other oscillating neural groups. We use recently developed mean-field models which provide an exact description of the macroscopic activity of the spiking network. This low-dimensional mean field model allows us to use tools from bifurcation theory to identify the phase-locked states between the input and the target population as a function of the amplitude, frequency and coherence of the inputs. We identify the conditions for optimal phaselocking and selective communication. We find that inputs with high coherence can entrain the network for a wider range of frequencies. Besides, faster oscillatory inputs than the intrinsic network gamma cycle show more effective communication than inputs with similar frequency. Our analysis further shows that the entrainment of the network by inputs with higher frequency is more robust to distractors, thus giving them an advantage to entrain the network. Finally, we show that pulsatile inputs can switch between attended inputs in selective attention.Author summaryOscillations are ubiquitous in the brain and are involved in several cognitive tasks but their role is not completely understood. The Communication Through Coherence theory proposes that background oscillations in the brain regulate the information flow between neural populations. The oscillators that are properly phase-locked so that inputs arrive at the peaks of excitability of the receiving population communicate effectively. In this paper, we study the emerging phase-locking patterns of a network generating PING oscillations under external periodic forcing, simulating the oscillatory input from other neural groups. We identify the conditions for optimal phase-locking and selective communication. Namely, we find that inputs with higher frequency and coherence have an adavantage to entrain the network and we quantify how robust are to distractors. Furthermore, we show how selective attention can be implemented by means of phase locking and we show that pulsatile inputs can switch between attended inputs.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献