Author:
Bono Jacopo,Zannone Sara,Pedrosa Victor,Clopath Claudia
Abstract
AbstractWe describe a framework where a biologically plausible spiking neural network mimicking hippocampal layers learns a cognitive map known as the successor representation. We show analytically how, on the algorithmic level, the learning follows the TD(λ) algorithm, which emerges from the underlying spike-timing dependent plasticity rule. We then analyze the implications of this framework, uncovering how behavioural activity and experience replays can play complementary roles when learning the representation of the environment, how we can learn relations over behavioural timescales with synaptic plasticity acting on the range of milliseconds, and how the learned representation can be flexibly encoded by allowing state-dependent delay discounting through neuromodulation and altered firing rates.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献