Cancer Cells Viscoelasticity Measurement by Quantitative Phase and Flow Stress Induction

Author:

Vicar TomasORCID,Gumulec JaromirORCID,Chmelik JiriORCID,Navratil Jiri,Kolar RadimORCID,Chmelikova LarisaORCID,Cmiel VratislavORCID,Provaznik IvoORCID,Masarik MichalORCID

Abstract

ABSTRACTCell viscoelastic properties are affected by the cell cycle, differentiation, pathological processes such as malignant transformation. Therefore, evaluation of the mechanical properties of the cells proved to be an approach to obtaining information on the functional state of the cells. Most of the currently used methods for cell mechanophenotypisation are limited by low robustness or the need for highly expert operation. In this paper, the system and method for viscoelasticity measurement using shear stress induction by fluid flow is described and tested. Quantitative Phase Imaging (QPI) is used for image acquisition because this technique enables to quantify optical path length delays introduced by the sample, thus providing a label-free objective measure of morphology and dynamics. Viscosity and elasticity determination were refined using a new approach based on the linear system model and parametric deconvolution. The proposed method allows high-throughput measurements during live cell experiments and even through a time-lapse, where we demonstrated the possibility of simultaneous extraction of shear modulus, viscosity, cell morphology, and QPI-derived cell parameters like circularity or cell mass. Additionally, the proposed method provides a simple approach to measure cell refractive index with the same setup, which is required for reliable cell height measurement with QPI, an essential parameter for viscoelasticity calculation. Reliability of the proposed viscoelasticity measurement system was tested in several experiments including cell types of different Young/shear modulus and treatment with cytochalasin D or docetaxel, and an agreement with atomic force microscopy was observed. The applicability of the proposed approach was also confirmed by a time-lapse experiment with cytochalasin D washout, where an increase of stiffness corresponded to actin repolymerisation in time.SIGNIFICANCEWe present an approach for viscoelasticity measurement using QPI and shear stress induction by fluid flow. Our system builds and extends a recently published approach by parametric deconvolution, which allows us to eliminate the influence of the fluidic system and reliably measure both the shear modulus and viscosity of the cells in high throughput. Additionally, the proposed method enables to simultaneously determine cell refractive index map, cell dry mass map, and morphology, thereby enabling a multimodal cellular characterisation in a single measurement.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3