Quaternary structure independent folding of voltage-gated ion channel pore domain subunits

Author:

Arrigoni Cristina,Lolicato Marco,Shaya David,Rohaim Ahmed,Findeisen Felix,Colleran Claire M.,Dominik Pawel,Kim Sangwoo S.,Schuermann Jonathan,Kossiakoff Anthony A.,Minor Daniel L.ORCID

Abstract

AbstractEvery voltage-gated ion channel (VGIC) superfamily member has an ion conducting pore consisting of four pore domain (PD) subunits that are each built from a common plan comprising an antiparallel transmembrane helix pair, a short, obliquely positioned helix (the pore helix), and selectivity filter. The extent to which this structure, the VGIC-PD fold, relies on the extensive quaternary interactions observed in PD assemblies is unclear. Here, we present crystal structures of three bacterial voltage-gated sodium channel (BacNav) pores that adopt a surprising set of non-canonical quaternary structures and yet maintain the native tertiary structure of the PD monomer. This context-independent structural robustness demonstrates that the VGIC-PD fold, the fundamental VGIC structural building block, can adopt its native-like tertiary fold independent of native quaternary interactions. In line with this observation, we find that the VGIC-PD fold is not only present throughout the VGIC superfamily and other channel classes but has homologs in diverse transmembrane and soluble proteins. Characterization of the structures of two synthetic Fabs (sFabs) that recognize the VGIC-PD fold shows that such sFabs can bind purified full-length channels and indicates that non-canonical quaternary PD assemblies can occur in the context of complete VGICs. Together, our data demonstrate that the VGIC-PD structure can fold independently of higher-order assembly interactions and suggest that full-length VGIC PDs can access previously unknown non-canonical quaternary states. These PD properties have deep implications for understanding how the complex quaternary architectures of VGIC superfamily members are achieved and point to possible evolutionary origins of this fundamental VGIC structural element.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3