High temperature perception in leaves promotes vascular regeneration in distant tissues

Author:

Serivichyaswat Phanu T.,Bartusch Kai,Leso MartinaORCID,Musseau ConstanceORCID,Iwase Akira,Chen Yu,Sugimoto Keiko,Quint MarcelORCID,Melnyk Charles W.ORCID

Abstract

AbstractCellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and developmental pathways affect wound healing but little is known about how external factors influence regeneration. To better understand how the environment affects regeneration, we investigated the effects of temperature using the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration of Arabidopsis thaliana and tomato (Solanum lycopersicum) grafts. Leaves were critical for this effect since blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations had no effect upon graft healing at ambient temperatures and mutations in PIF4 did not affect the temperature enhancement of callus formation or tissue adhesion, suggesting that leaf-derived auxin was specific for enhancing vascular regeneration in response to elevated temperatures. Tissue-specific perturbations of auxin response using a BODENLOS (BDL) mutant revealed an asymmetric effect of temperature upon regeneration: the presence of bdl above the cut prevented temperature enhancement whereas the presence of bdl below the cut prevented graft healing regardless of temperature. Promotion of tissue regeneration by elevated temperatures was not specific for graft healing and we found that elevated temperatures accelerated xylem formation between the parasite Phtheirospermum japonicum and host Arabidopsis thaliana, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway by which elevated temperatures accelerate vascular development which could be of relevance for improving regeneration and better understanding inter-plant vascular connections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3