A gene-based capture assay for surveying patterns of genetic diversity and insecticide resistance in a worldwide group of invasive mosquitoes

Author:

Aardema Matthew L.ORCID,Campana Michael G.,Wagner Nicole E.,Ferreira Francisco C.,Fonseca Dina M.

Abstract

AbstractUnderstanding patterns of diversification, genetic exchange, and pesticide resistance in insect species of human health concern is necessary for effective population reduction and management. With the broad availability of next-generation sequencing technologies, one of the best approaches for surveying such patterns involves the simultaneous genotyping of many samples for large numbers of genetic markers from across the known genome. To this end, the targeting of gene sequences of known function or inheritance can be a cost-effective strategy. One insect group of substantial health concern are the mosquito taxa that make up the Culex pipiens complex. Members of this complex transmit damaging arboviruses and filariae worms to humans, as well as other pathogens that are detrimental to endangered vertebrate species such as bird malaria. Here we describe our development of a targeted gene-based assay for surveying genetic diversity and population structure in this mosquito complex. To test the utility of this assay, we examined taxonomic divergence among samples from several members of the complex, as well as distinct populations of the relatively under-studied Culex quinquefasciatus, an urban pantropical species. We also examined the presence of known insecticide-resistance conferring alleles. Broadly, our developed gene-based assay proved effective for examining patterns of taxonomic and geographic clustering within the species complex, as well as for surveying genetic variants that have been associated with insecticide resistance. This assay will be useful for future studies that aim to understand the genetic mechanisms underlying the evolution of ubiquitous and increasingly damaging disease vectors.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Aardema, M. L. , Olatunji, S. K. & Fonseca D. M. (accepted) The enigmatic Culex pipiens species complex: phylogenetic challenges and opportunities from a notoriously tricky mosquito group. Annals of the Entomological Society of America.

2. The Genome Sequence of Drosophila melanogaster

3. Fast model-based estimation of ancestry in unrelated individuals

4. Alexander, D. H. , Shringarpure, S. S. , Novembre, J. , & Lange, K. (2015). Admixture 1.3 software manual. Los Angeles: UCLA Human Genetics Software Distribution.

5. Adaptive evolution of non-coding DNA in Drosophila

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3