Abstract
AbstractAccumulation of Aβ in the brain is one of the hallmarks of Alzheimer’s disease (AD). In the adult Drosophila brain, human Aβ over-expression is toxic and leads to deterioration of climbing ability and shortened lifespan. However, it remains unknown if Aβ is inherently toxic or if it triggers toxic downstream pathways that lead to neurodegeneration. Here, we describe a novel, and previously unidentified, protective role of intracellular laminin chain accumulation. Despite high Aβ levels, over-expression of the extracellular matrix protein subunit Laminin B1 (LanB1) resulted in a robust rescue of toxicity, highlighting a potential protective mechanism of resistance to Aβ. Over-expression of other Laminin subunits and a Collagen IV subunit also significantly rescued Aβ toxicity, while combining LanB1 with these subunits led to an even larger rescue. Imaging revealed that LanB1 was retained in the ER but had no effect on the secretion of Aβ into the extracellular milieu. LanB1 rescued toxicity independently of the IRE1α/XBP1-mediated branch of the ER stress response. Interestingly, over-expression of ER-targeted GFP also rescued Aβ toxicity, indicating a potentially broader benefit of ER protein retention. Finally, in proof-of-principle lentiviral transduction experiments using murine organotypic hippocampal slice cultures, over-expression of mouse Lamb1 resulted in ER-retention in transduced cells, highlighting a conserved mechanism. Typically, retention of proteins in the ER is detrimental to cellular health, but in the context of neuronal Aβ toxicity it may prove to be beneficial and a new therapeutic avenue for AD.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献