A Gene Replacement Humanization Platform for Rapid Functional Testing of Clinical Variants in Epilepsy-associated STXBP1

Author:

McCormick Kathryn,Brock Trisha,Wood Matthew,Guo Lan,McBride Kolt,Kim Christine,Resch Lauren,Pop Stelian,Bradford Chandler,Kendrick Preston,Lawson Jennifer A.,Saunders Adam,McKeown Sarah,Helbig Ingo,Bainbridge Matthew N.,Hopkins Christopher E

Abstract

AbstractPurposeFunctional evidence is a pillar of variant interpretation according to ACMG guidelines. Functional evidence can be obtained in a variety of models and assay systems, including patient-derived tissues and iPSCs, in vitro cellular assays, and in vivo assays. Here we evaluate the reliability and practicality of variant interpretation in the small animal model, C. elegans, through a series of experiments evaluating the function of syntaxin binding protein, STXBP1, a well-known causative gene for Early infantile epileptic encephalopathy 1 (EIEE1).MethodsUsing CRISPR, we replaced the coding sequence for unc-18 with the coding sequence for the human ortholog STXBP1. Next, we used CRISPR to introduce precise point mutations in the human STXBP1 coding sequence, reflecting three clinical categories (benign, pathogenic, and variants of uncertain significance (VUS)). We quantified 26 features of the resulting worms’ movement to train Random Forest (RF) and Support Vector Machines (SVM) machine learning classifiers on known pathogenic and benign variants. We characterized the classifiers, and then used the behavioral data from the VUS-expressing animals to predict the categorization of the VUS.ResultsWhereas knock-out worms without unc-18 are severely impaired in motor function, worms expressing STXBP1 in its place have restored motor function. We produced worms with STXBP1 variants previously classified by ACMG criteria, including 25 benign variants, 32 pathogenic, and 24 variants of uncertain significance (VUS). Using either SVM or RF classifiers, we were able to obtain a sensitivity of 0.84-0.97 on known benign and pathogenic strains. By comparing multiple ML classification methods, we were able to classify 9 of the VUS as functionally abnormal, suggesting that these VUS are likely to be pathogenic.ConclusionsWe demonstrate that automated analysis of a small animal system is an effective, scalable, and fast way to understand functional consequences of variants in STXBP1, one of the most common causes of genetic epilepsies and neurodevelopmental disorders.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Genome sequence data: management, storage, and visualization;BioTechniques,2009

2. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application

3. The Exome Clinic and the role of medical genetics expertise in the interpretation of exome sequencing results;Genet. Med. Off. J. Am. Coll. Med. Genet.,2017

4. Strategic vision for improving human health at The Forefront of Genomics

5. Rhapsody: predicting the pathogenicity of human missense variants;Bioinforma. Oxf. Engl.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3