Oral Glucosamine Ameliorates Aggravated Neurological Phenotype in Mucopolysaccharidosis III Type C Mouse Model Expressing Misfolded HGSNAT Variant

Author:

Pan Xuefang,Taherzadeh Mahsa,Bose Poulomee,Heon-Roberts Rachel,Nguyen Annie L. A.,Xu TianMeng,Pará Camila,Yamanaka YojiroORCID,Priestman David A.,Platt Frances M.,Khan Shaukat,Fnu Nidhi,Tomatsu Shunji,Morales Carlos R.,Pshezhetsky Alexey V.

Abstract

AbstractObjectiveOver 55% of mucopolysaccharidosis IIIC (MPS IIIC) patients have at least one allelic missense variant responsible for misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N- acetyltransferase (HGSNAT). These variants are potentially treatable with pharmacological chaperones, such as a competitive HGSNAT inhibitor, glucosamine. Since the constitutive HGSNAT knockout mice, we generated previously cannot be used to test such strategy in vivo, we generated a novel model, the HgsnatP304L strain, expressing misfolded mutant HGSNAT with human missense mutation Pro311Leu (Pro304Leu in the mouse enzyme).ResultsHgsnatP304L mice present deficits in short-term (novel object recognition test) and working/spatial (Y-maze test) memory at 4 months of age, 2-4 months earlier than previously described gene-targeted Hgsnat-Geo mice, which lack HGSNAT protein. HgsnatP304L mice also show increased severity of synaptic deficits in CA1 neurons, and accelerated course of CNS pathology including neuronal storage of heparan sulfate, accumulation of misfolded proteins, increase of simple gangliosides, and neuroinflammation as compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat- Geo neurons aggravated reduction of synaptic proteins. Memory deficits and majority of pathological changes in the brain were rescued in mice receiving daily doses of oral glucosamine.InterpretationAltogether, our data for the first time demonstrate dominant-negative effects of the misfolded HGSNAT Pro304Leu variant and show that these effects are treatable by oral administration of glucosamine, suggesting that patients, affected with missense mutations preventing normal folding of the enzyme, could benefit from chaperone therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3