Characterizing the performance of human leg external force control

Author:

Kudzia PawelORCID,Robinovich Stephen N.ORCID,Maxwell Donelan J.

Abstract

AbstractOur legs act as our primary contact with the surrounding environment, generating external forces that enable agile motion. To be agile, the nervous system has to control both the magnitude of the force that the feet apply to the ground and the point of application of this force. The purpose of this study was to characterize the performance of the healthy human neuromechanical system in controlling the force-magnitude and position of an externally applied force. To accomplish this, we built an apparatus that immobilized participants but allowed them to exert variable but controlled external forces with a single leg onto a ground embedded force plate. We provided real-time visual feedback of either the leg force-magnitude or position that participants were exerting against the force platform and instructed participants to best match their real-time signal to prescribed target step functions. We tested target step functions of a range of sizes and quantified the responsiveness and accuracy of the control. For the control of force-magnitude and for intermediate step sizes of 0.45 bodyweights, we found a bandwidth of 1.8±0.5 Hz, a steady-state error of 2.6±0.9%, and a steady-state variability of 2.7±0.9%. We found similar control performance in terms of responsiveness and accuracy across step sizes and between force-magnitude and position control. Increases in responsiveness correlated with reductions in other measures of control performance, such as a greater magnitude of overshooting. We modelled the observed control performance and found that a second-order model was a good predictor of external leg force control. We discuss how benchmarking force control performance in young healthy humans aids in understanding differences in agility between humans, between humans and other animals, and between humans and engineered systems.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Optimal strategies for predator avoidance: The relative importance of speed and manoeuvrability

2. Quantifying Dynamic Stability and Maneuverability in Legged Locomotion

3. J. Hwangbo , J. Lee , A. Dosovitskiy , D. Bellicoso , V. Tsounis , V. Koltun , and M. Hutter , “Learning agile and dynamic motor skills for legged robots,” Sci Robot, vol. 4, no. 26, Jan. 2019.

4. Relationships between sprinting, agility, and jump ability in female athletes

5. Relationship Between Jumping Ability, Agility and Sprint Performance of Elite Young Basketball Players: A Field-Test Approach;Braz. J. Kinanthropometry Hum. Performance,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3