Plus and minus ends of microtubule respond asymmetrically to kinesin binding by a long range directionally driven allosteric mechanism

Author:

Vu Huong T.,Zhang Zhechun,Tehver Riina,Thirumalai D.

Abstract

Many members in the kinesin superfamily walk predominantly towards the plus end of the micro-tubule (MT) in a hand-over-hand manner. Despite great progress in elucidating the mechanism of stepping kinetics, the origin of stepping directionality is not fully understood. To provide quantitative insights into this important issue, we represent the structures of conventional kinesin (Kin1), MT, and the Kin1-MT complex using the elastic network model, and calculate the residue-dependent responses to a local perturbation in these constructs. Fluctuations in the residues in the β domain of the α/β-tubulin are distinct from the α domain. Surprisingly, the Kin1-induced asymmetry, which is more pronounced in α/β-tubulin in the plus end of MT than in the minus end, propagates spatially across multiple α/β-tubulin dimers. Kin1 binding expands the MT lattice by mechanical stresses, resulting in a transition in the cleft of α/β tubulin dimer between a closed (CC for closed cleft) state (not poised for Kin1 to bind) to an open (OC for open cleft) binding competent state. The long-range asymmetric responses in the MT, leading to the creation of OC states with high probability in several α/β dimers on the plus end of the bound Kin1, is needed for the motor to take multiple steps towards the plus end of the MT. Reciprocally, kinesin binding to the MT stiffens the residues in the MT binding region, induces correlations between switches I and II in the motor, and enhances fluctuations in ADP and the residues in the binding pocket. Our findings explain both the directionality of stepping and MT effects on a key step in the catalytic cycle of Kin1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3