Real-time Continuous Measurement of Lactate through a Minimally-invasive Microneedle Biosensor: a Phase I Clinical Study

Author:

Ming DKORCID,Jangam S,Gowers SANORCID,Wilson RORCID,Freeman DMEORCID,Boutelle MG,Cass AEGORCID,O’Hare DORCID,Holmes AHORCID

Abstract

AbstractIntroductionDetermination of blood lactate levels supports decision-making in a range of medical conditions. Invasive blood-sampling and laboratory access are often required, and measurements provide a static profile at each instance. We conducted a Phase I clinical study validating performance of a microneedle patch for minimally-invasive, continuous lactate measurement in healthy volunteers.MethodsFive healthy adult participants wore a solid microneedle biosensor on their forearms and undertook aerobic exercise for 30 minutes. The microneedle biosensor quantifies lactate concentrations in interstitial fluid (ISF) within the dermis continuously and in real-time. Outputs were captured as sensor current and compared with lactate concentrations from venous blood and microdialysis.ResultsThe biosensor was well-tolerated. Participants generated a median peak venous lactate of 9.25 mmol/L (Interquartile range, 6.73 to 10.71). Microdialysate concentrations of lactate closely correlated with blood. Microneedle biosensor current followed venous lactate concentrations and dynamics, with good agreement seen in all participants. There was an estimated lag-time of 5 minutes (IQR -4 to 11 minutes) between microneedle and blood lactate measurements.ConclusionThis study provides first-in-human data on use of a minimally-invasive microneedle biosensor for continuous lactate measurement, providing dynamic monitoring. The platform offers distinct advantages to frequent blood sampling in a wide range of clinical settings, especially where access to laboratory services is limited or blood sampling is infeasible.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3