A Capped Tudor Domain within a Core Subunit of the Sin3L/Rpd3L Histone Deacetylase Complex Binds Nucleic Acids

Author:

Marcum Ryan Dale,Hsieh Joseph,Giljen Maksim,Zhang Yongbo,Radhakrishnan IshwarORCID

Abstract

AbstractChromatin-modifying complexes containing histone deacetylase (HDAC) activities play critical roles in the regulation of gene transcription in eukaryotes. These complexes are thought to lack intrinsic DNA-binding activity, but according to a well-established paradigm, they are recruited via protein-protein interactions by gene-specific transcription factors and post-translational histone modifications to their sites of action on the genome. The mammalian Sin3L/Rpd3L complex, comprising more than a dozen different polypeptides, is an ancient HDAC complex found in diverse eukaryotes. The subunits of this complex harbor conserved domains and motifs of unknown structure and function. Here we show that Sds3, a constitutively associated subunit critical for the proper functioning of the complex, harbors a type of Tudor domain that we designate the capped Tudor domain (CTD). Unlike canonical Tudor domains that bind modified histones, the Sds3 CTD binds to nucleic acids that can form higher-order structures such as G-quadruplexes, and shares similarities with the knotted Tudor domain of the Esa1 histone acetyltransferase (HAT) that was previously shown to bind single-stranded RNA. Our findings expand the range of macromolecules capable of recruiting the Sin3L/Rpd3L complex and draws attention to potentially new roles for this HDAC complex in transcription biology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3