Direct reprogramming of human fibroblasts into insulin-producing cells by transcription factors

Author:

Fontcuberta-PiSunyer Marta,García-Alamán Ainhoa,Prades Èlia,Téllez Noèlia,Figueiredo Hugo,Fernandez-Ruiz Rebeca,Cervantes Sara,Enrich CarlosORCID,Clua Laura,Ramón-Azcón Javier,Broca Christophe,Wojtusciszyn Anne,Novials Anna,Montserrat Nuria,Vidal Josep,Gomis Ramon,Gasa RosaORCID

Abstract

ABSTRACTDirect lineage reprogramming of one somatic cell into another bypassing an intermediate pluripotent state has emerged as an alternative to embryonic or induced pluripotent stem cell differentiation to generate clinically relevant cell types. One cell type of clinical interest is the pancreatic β cell that secretes insulin and whose loss and/or dysfunction leads to diabetes. Generation of functional β-like cells from developmentally related somatic cell types (pancreas, liver, gut) has been achieved via enforced expression of defined sets of transcription factors. However, clinical applicability of these findings is challenging because the starting cell types are not easily obtainable. Skin fibroblasts are accessible and easily manipulated cells that could be a better option, but available studies indicate that their competence to give rise to β cells through similar direct reprogramming approaches is limited. Here, using human skin fibroblasts and a protocol that ensures high and consistent expression of adenovirus-encoded reprogramming factors, we show that the transcription factor cocktail consisting of Pdx1, Ngn3, MafA, Pax4 and Nkx2-2 activates key β cell genes and down-regulates the fibroblast transcriptional program. The converted cells produce insulin and exhibit intracellular calcium responses to glucose and/or membrane depolarization. Furthermore, they secrete insulin in response to glucose in vitro and after transplantation in vivo. These findings demonstrate that transcription factor-mediated direct reprogramming of human fibroblasts is a feasible strategy to generate insulin-producing cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3