Chlamydomonas ATX1 is essential for Cu distribution towards the secretory pathway and maintenance of biomass in conditions demanding cupro-enzyme dependent metabolic pathways

Author:

Pham Keegan L. J.ORCID,Schmollinger StefanORCID,Merchant Sabeeha S.ORCID,Strenkert DanielaORCID

Abstract

AbstractCopper (Cu) chaperones, of which yeast ATX1 is a prototype, are small proteins with a Cu(I) binding Mx-CxxC motif, and are responsible for directing intracellular Cu towards specific client protein targets that use Cu as a cofactor. The Chlamydomonas reinhardtii ATX1 (CrATX1) was identified because of its high sequence similarity with yeast ATX1. Like the yeast homologue, CrATX1 accumulates in iron-deficient cells (but is not impacted by other metal-deficiencies), and YFP-ATX1 is distributed in the cytoplasm. Reverse genetic analysis using artificial microRNA (amiRNA) to generate lines with reduced CrATX1 abundance and CRISPR/CPF1 to generate ATX1 knock out lines validated a function for ATX1 in iron-poor cells, most likely because of an impact on metalation of the multicopper oxidase FOX1, which is an important component in high-affinity iron uptake. A more general impact on the secretory pathway is indicated by reduced growth of ATX1 mutant lines on guanine as a sole nitrogen source, which we attribute to loss of function of UOX1, a urate oxidase involved in guanine assimilation. The block of Cu trafficking towards the secretory pathway in ATX1 mutants is strikingly evident by a reduced amount of intracellular Cu in all conditions probed in this work.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3