The Proteomic Architecture of Schizophrenia Cerebral Organoids Reveals Alterations in GWAS and Neuronal Development Factors

Author:

Notaras Michael,Lodhi Aiman,Fang Haoyun,Greening David,Colak Dilek

Abstract

ABSTRACTSchizophrenia (Scz) is a brain disorder that has a typical onset in early adulthood but otherwise maintains unknown disease origins. Unfortunately, little progress has been made in understanding the molecular mechanisms underlying neurodevelopment of Scz due to ethical and technical limitations in accessing developing human brain tissue. To overcome this challenge, we have previously utilized patient-derived Induced Pluripotent Stem Cells (iPSCs) to generate self-developing, self-maturating, and self-organizing 3D brain-like tissue known as cerebral organoids. As a continuation of this prior work [1], here we provide a molecular architectural map of the developing Scz organoid proteome. Utilizing iPSCs from n = 25 human donors (n = 8 healthy Ctrl donors, and n = 17 Scz patients), we generated 3D human cerebral organoids, employed 16-plex isobaric sample-barcoding chemistry, and simultaneously subjected samples to comprehensive high-throughput liquid-chromatography/mass-spectrometry (LC/MS) quantitative proteomics. Of 3,705 proteins identified by high-throughput proteomic profiling, we identified that just ~2.62% of the organoid global proteomic landscape was differentially regulated in Scz organoids. In sum, just 43 proteins were up-regulated and 54 were down-regulated in Scz patient-derived organoids. Notably, a range of neuronal factors were depleted in Scz organoids (e.g., MAP2, TUBB3, SV2A, GAP43, CRABP1, NCAM1 etc.). Based on global enrichment analysis, alterations in key pathways that regulate nervous system development (e.g., axonogenesis, axon development, axon guidance, morphogenesis pathways regulating neuronal differentiation, as well as substantia nigra development) were perturbed in Scz patient-derived organoids. We also identified prominent alterations in two novel GWAS factors, Pleiotrophin (PTN) and Podocalyxin (PODXL), in Scz organoids. In sum, this work serves as both a report and a resource whereby researchers can leverage human-derived neurodevelopmental data from Scz patients, which can be used to mine, compare, contrast, or orthogonally validate novel factors and pathways related to Scz risk identified in datasets from observational clinical studies and other model systems.

Publisher

Cold Spring Harbor Laboratory

Reference96 articles.

1. Notaras, M. , et al., Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry, 2021.

2. Diagnosing Schizophrenia in the Initial Prodromal Phase

3. The Schizophrenia Prodrome Revisited: A Neurodevelopmental Perspective

4. In utero infection and adult schizophrenia

5. Kunugi, H. , et al., Schizophrenia following in utero exposure to the 1957 influenza epidemics in Japan. Am J Psychiatry, 1995.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3