An Association Test of the Spatial Distribution of Rare Missense Variants within Protein Structures Improves Statistical Power of Sequencing Studies

Author:

Jin Bowen,Capra John A.ORCID,Benchek Penelope,Wheeler Nicholas,Naj Adam C.ORCID,Hamilton-Nelson Kara L.,Farrell John J.,Leung Yuk Yee,Kunkle Brian,Vadarajan Badri,Schellenberg Gerard D.,Mayeux Richard,Wang Li-san,Farrer Lindsay A.,Pericak-Vance Margaret A.,Martin Eden R.,Haines Jonathan L.,Crawford Dana C.,Bush William S.ORCID

Abstract

ABSTRACTOver 90% of variants are rare, and 50% of them are singletons in the Alzheimer’s Disease Sequencing Project Whole Exome Sequencing (ADSP WES) data. However, either single variant tests or unit-based tests are limited in the statistical power to detect the association between rare variants and phenotypes. To best utilize rare variants and investigate their biological effect, we exam their association with phenotypes in the context of protein. We developed a protein structure-based approach, POKEMON (Protein Optimized Kernel Evaluation of Missense Nucleotides), which evaluates rare missense variants based on their spatial distribution on the protein rather than allele frequency. The hypothesis behind this is that the three-dimensional spatial distribution of variants within a protein structure provides functional context and improves the power of association tests. POKEMON identified four candidate genes from the ADSP WES data, namely two known Alzheimer’s disease (AD) genes (TREM2 and SORL) and two novel genes (DUSP18 and CSF1R). For known AD genes, the signal from the spatial cluster is stable even if we exclude known AD risk variants, indicating the presence of additional low frequency risk variants within these genes. DUSP18 has a cluster of variants primarily shared by case subjects around the ligand-binding domain, and this cluster is further validated in a replication dataset with a larger sample size. POKEMON is an open-source tool available at https://github.com/bushlab-genomics/POKEMON.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3