Abstract
AbstractBackgroundAfter moving instruction online for more than a year, many colleges and universities are preparing to reopen and offering fully in-person classes for the Fall 2021 semester. In this paper, we study the impact of weekly testing protocols on college campuses.MethodsAn extended susceptible–infectious–removed (SIR) compartmental model was used to simulate COVID-19 spread on a college campus setting. Seven scenarios were evaluated which considered polymerase chain reaction (PCR) and rapid antigen testing kits available at various levels of supply. The infection attack rate (IAR), the number of infections, and the number of tests utilized by the end of the simulation semester are reported and compared.ResultsWeekly testing significantly reduces the number of infections compared to when testing is not available. The use of PCR tests results in the lowest infection attack rate and the total number of cases; however, using rapid antigen tests with higher coverage is more effective than using PCR tests with lower coverage.ConclusionsThe implementation of COVID-19 testing protocols should be considered and evaluated as using testing allows for identification and isolation of cases which reduces the spread of COVID-19 on college campuses. Even if testing capacity is limited, its partial implementation can be beneficial.
Publisher
Cold Spring Harbor Laboratory
Reference3 articles.
1. Simulating COVID-19 in a university environment
2. Controlling the spread of covid-19 on college campuses;Mathematical biosciences and engineering : MBE,2020
3. The Need for More and Better Testing for COVID-19
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献