Abstract
AbstractThermal signals are critical elements in the operation of interoceptive and exteroceptive neural circuits, essential for triggering thermally-driven reflexes and conscious behaviors. A fraction of cutaneous and visceral sensory endings are activated by cold temperatures. Compared to somatic (DRG and TG) neurons, little is known about the mechanisms underlying cold sensitivity of visceral vagal neurons. We used pharmacological and genetic tools for a side-by-side characterization of cold-sensitive (CS) neurons in adult mouse trigeminal (TG) and vagal ganglia (VG).We found that CS neurons are more abundant in VG than in TG. In both ganglia, sensitivity to cold varied widely and was enhanced by the potassium channel blocker 4-AP. The majority of CS neurons in VG co-express TRPA1 markers and cold-evoked responses are severely blunted in Trpa1 KO mice, with little impact of TRPM8 deletion or pharmacological TRPM8 blockade. Consistent with these findings, the expression of TRPM8-positive neurons was low in VG and restricted to the rostral jugular ganglion. In vivo retrograde labelling of airway-innervating vagal neurons demonstrated their enhanced cold sensitivity and a higher expression of TRPA1 compared to neurons innervating the stomach wall. In contrast, the majority of CS TG neurons co-express TRPM8 markers and their cold sensitivity is reduced after TRPM8 deletion or blockade. However, pharmacological or genetic reduction of TRPA1 showed that these channels contribute significantly to their cold sensitivity in TG. In both ganglia, a fraction of CS neuron respond to cooling by a mechanism independent of TRPA1 or TRPM8 yet to be characterized.
Publisher
Cold Spring Harbor Laboratory