Data Storage Based on Combinatorial Synthesis of DNA Shortmers

Author:

Preuss InbalORCID,Yakhini ZoharORCID,Anavy LeonORCID

Abstract

AbstractStorage needs represent a significant burden on the economy and the environment. Some of this can potentially be offset by improved density molecular storage. The potential of using DNA for storing data is immense. DNA can be harnessed as a high density, durable archiving medium for compressing and storing the exponentially growing quantities of digital data that mankind generates. Several studies have demonstrated the potential of DNA-based data storage systems. These include exploration of different encoding and error correction schemes and the use of different technologies for DNA synthesis and sequencing. Recently, the use of composite DNA letters has been demonstrated to leverage the inherent redundancy in DNA based storage systems to achieve higher logical density, offering a more cost-effective approach. However, the suggested composite DNA approach is still limited due to its sensitivity to the stochastic nature of the process. Combinatorial assembly methods were also suggested to encode information on DNA in high density, while avoding the challenges of the stochastic system. These are based on enzynatic assembly processes for producing the synthetic DNA.In this paper, we propose a novel method to encode information into DNA molecules using combinatorial encoding and shortmer DNA synthesis, in compatibility with current chemical DNA synthesis technologies. Our approach is based on a set of easily distinguishable DNA shortmers serving as building blocks and allowing for near-zero error rates. We construct an extended combinatorial alphabet in which every letter is a subset of the set of building blocks. We suggest different combinatorial encoding schemes and explore their theoretical properties and practical implications in terms of error probabilities and required sequencing depth. To demonstrate the feasibility of our approach, we implemented an end-to-end computer simulation of a DNA-based storage system, using our suggested combinatorial encodings. We use simulations to assess the performance of the system and the effect of different parameters.Our simulations suggest that our combinatorial approach can potentially achieve up to 6.5-fold increase in the logical density over standard DNA based storage systems, with near zero reconstruction error.Implementing our approach at scale to perform actual synthesis, requires minimal alterations to current technologies. Our work thus suggests that the combination of combinatorial encoding with standard DNA chemical synthesis technologies can potentially improve current solutions, achieving scalable, efficient and cost-effective DNA-based storage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3