Author:
Giacobelli Valerio G.,Fujishima Kosuke,Lepšík Martin,Tretyachenko Vyacheslav,Kadavá Tereza,Bednárová Lucie,Novák Petr,Hlouchová Klára
Abstract
AbstractRNA-peptide/protein interactions have been of utmost importance to life since its earliest forms, reaching even before the last universal common ancestor (LUCA). However, the ancient molecular mechanisms behind this key biological interaction remain enigmatic because extant RNA-protein interactions rely heavily on positively charged and aromatic amino acids that were absent (or heavily under-represented) in the early pre-LUCA evolutionary period. Here, an RNA-binding variant of the ribosomal L11 C-terminal domain was selected from a ∼1010 library of partially randomized sequences, all composed of 10 prebiotically plausible canonical amino acids. The selected variant binds to the cognate RNA with a similar overall affinity although it is less structured in the unbound form than the wild-type protein domain. The variant complex association and dissociation are both slower than for the wild-type, implying different mechanistic processes involved. The profile of the wild-type and mutant complex stabilities along with MD simulations uncover qualitative differences in the interaction modes. In the absence of positively charged and aromatic residues, the mutant L11 domain uses bridging ion (K+/Mg2+) interactions between the RNA sugar-phosphate backbone and glutamic acid residues as an alternative source of stabilization. This study presents experimental support to provide a new perspective on how early protein-RNA interactions evolved, where the lack of aromatic/basic residues was compensated by acidic residues plus metal ions.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献