Glue genes are subjected to diverse selective forces during Drosophila development

Author:

Borne FloraORCID,Kulathinal Rob J.ORCID,Courtier-Orgogozo VirginieORCID

Abstract

AbstractMolecular evolutionary studies usually focus on genes with clear roles in adult fitness or on developmental genes expressed at multiple time points during the life of the organism. Here, we examine the evolutionary dynamics of Drosophila glue genes, a set of eight genes tasked with a singular primary function during a specific developmental stage: the production of glue that allows animal pupa to attach to a substrate for several days during metamorphosis. Using phenotypic assays and available data from transcriptomics, PacBio genomes, and genetic variation from global populations, we explore the selective forces acting on the glue genes within the cosmopolitan D. melanogaster species and its five closely related species, D. simulans, D. sechellia, D. mauritiana, D. yakuba, and D. teissieri. We observe a three-fold difference in glue adhesion between the least and the most adhesive D. melanogaster strain, indicating a strong genetic component to phenotypic variation. These eight glue genes are among the most highly expressed genes in salivary glands yet they display no notable codon bias. New copies of Sgs3 and Sgs7 are found in D. yakuba and D. teissieri with the Sgs3 coding sequence evolving rapidly after duplication in the D. yakuba branch. Multiple sites along the various glue genes appear to be constrained. Our population genetics analysis in D. melanogaster suggests signs of local adaptive evolution for Sgs3, Sgs5 and Sgs5bis and traces of selective sweeps for Sgs1, Sgs3, Sgs7 and Sgs8. Our work shows that stage-specific genes can be subjected to various dynamic evolutionary forces. (249 words)Significance statementDrosophila larvae produce a glue to stick themselves to a substrate for several days during metamorphosis. Here we observe wide variation in stickiness among Drosophila melanogaster strains and we analyze the molecular evolution of eight glue genes. We find several recent gene duplications and heterogenous rates of evolution among these genes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3