Habitat fragmentation induces rapid divergence of migratory and isolated sticklebacks

Author:

Ramesh A.ORCID,Groothuis A.G.G.ORCID,Weissing F.J.ORCID,Nicolaus M.ORCID

Abstract

AbstractThe adaptive capacity of many organisms is seriously challenged by human-imposed environmental change, which currently happens at unprecedented rates and magnitudes. For migratory fish, habitat fragmentation is a major challenge that can compromise their survival and reproduction. Therefore, it is important to study if fish populations can adapt to such modifications of their habitat. Here, we study whether originally anadromous three-spined stickleback populations (Gasterosteus aculeatus; ‘migrants’) changed in behavior and morphology in response to human-induced isolation. We made use of a natural field-experiment, where the construction of pumping stations and sluices in the 1970s unintendedly created replicates of land-locked stickleback populations (‘resident’) in the Netherlands. For two years, we systematically tested populations of residents and migrants for differences in morphology and behavioral traits (activity, aggressiveness, exploration, boldness and shoaling) in lab-based assays. We detected differences between migrant and resident populations in virtually all phenotypic traits studied: compared to the ancestral migrants, residents were smaller in size, had fewer and smaller plates and were significantly more active, aggressive, exploratory and bolder and shoaled less. Despite large ecological differences between 2018 and 2019, results were largely consistent across the two years. Our study shows that human-induced environmental change has led to the rapid and consistent morphological and behavioral divergence of stickleback populations in about 50 generations. Such changes may be adaptive but this remains to be tested.Lay summaryThe adaptive capacity of many organisms is seriously challenged by human-imposed environmental changes. For example, migratory fish encounter man-made barriers that impede their movements and force them to adopt a resident lifecycle. Here we study whether and how populations of three-spined sticklebacks diverged in response to human-induced isolation. We show that about 50 generations of isolation were sufficient to induce substantial morphological and behavioral differentiation between land-locked populations (‘residents’) and their migratory ancestors (‘migrants’).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3