Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: distinctions in protein expression, membrane composition and activities

Author:

Kouba V.,Vejmelkova D.,Zwolsman E.,Hurkova K.,Navratilova K.,Laureni M.,Vodickova P.,Podzimek T.,Hajslova J.,Pabst M.,van Loosdrecht M.C.M.,Bartacek J.,Lipovova P.,Weissbrodt D.G.ORCID

Abstract

AbstractAnammox bacteria enable an efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to ≤15 °C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of ‘cold shocks’ is promising, involving hours-long exposure of anammox biomass to extremely low temperatures. We compared the efficacies of gradual temperature decrease and cold shocks to increase the metabolic activity of anammox (fed batch reactor, planktonic “Ca. Kuenenia”). We assessed the cold shock mechanism on the level of protein expression (quantitative shot-gun proteomics, LC-HRMS/MS) and structure of membrane lipids (UPLC-HRMS/MS). The shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d) and maintained the relative content of N-respiration proteins at levels consistent levels with the initial state, whereas the content of these proteins decreased in gradually acclimated culture. Cold shocks also induced a more efficient up-regulation of cold shock proteins (e.g. CspB, TypA, ppiD). Ladderane lipids characteristic for anammox evolved to a similar end-point in both cultures which confirms their role in anammox bacteria adaptation to cold and indicates a three-pronged adaptation mechanism involving ladderane lipids (ladderane alkyl length, introduction of shorter non-ladderane alkyls, polar headgroup). Overall, we show the outstanding potential of cold shocks for low-temperature adaptation of anammox bacteria and provide yet unreported detailed mechanisms of anammox adaptation to low temperatures.HighlightsAnammox bacteria were adapted to low T by gradual acclimation and cold shocksThe shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d)N-respiration proteins content decreased in gradually acclimated bacteriaSeveral cold shock proteins were upregulated more efficiently by cold shocksAt ↓T, anammox adjusted ladderane membrane lipid composition in three aspectsGraphical abstract

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. Apha (2005) Standard Methods for the Examination of Water & Wastewater, Amer Public Health Assn, Washington, D.C.

2. Mainstream partial nitritation-anammox in municipal wastewater treatment: status;bottlenecks, and further studies. Appl. Microbiol. Biotechnol,2017

3. Enrichment and adaptation yield high anammox conversion rates under low temperatures;Bioresour. Technol,2018

4. Adaptation to Cold and Proteomic Responses of the Psychrotrophic Biopreservative Lactococcus piscium Strain CNCM I-4031

5. Major cold shock protein of Escherichia coli.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3