Altered resting-state functional connectivity in hiPSC-derived neuronal networks from schizophrenia patients

Author:

Puvogel SofíaORCID,Blanchard Kris,Casas Bárbara S.,Miller RobynORCID,Garrido Delia,Sanhueza Magdalena,Palma Verónica

Abstract

ABSTRACTSchizophrenia (SZ) is a complex mental disease thought to arise from abnormal neurodevelopment, characterized by an altered reality perception and widely associated with brain connectivity anomalies. Previous work has shown disrupted resting-state brain functional connectivity (FC) in SZ patients. We used Human Induced Pluripotent Stem Cells (hiPSC)-derived neuronal cultures to study SZ’s neural communicational dynamics during early development. We conducted gene and protein expression profiling, calcium imaging and mathematical modeling to evaluate FC. Along the neurodifferentiation process, SZ networks displayed altered expression of genes related to synaptic function, cell migration and cytoskeleton organization, suggesting alterations in excitatory/inhibitory balance. Resting-state FC in neuronal networks derived from healthy controls (HC) and SZ patients emerged as a dynamic phenomenon exhibiting “hub-states”, which are connectivity configurations reoccurring in time. Compared to HC, SZ networks were less thorough in exploring different FC configurations, changed configurations less often, presented a reduced repertoire of hub-states and spent longer uninterrupted time intervals in this less diverse universe of hubs. Our observations at a single cell resolution may reflect intrinsic dynamical principles ruling brain activity at rest and highlight the relevance of identifying multiscale connectivity properties between functional brain units. We propose that FC alterations in SZ patients are a consequence of an abnormal early development of synaptic communication dynamics, compromising network’s ability for rapid and efficient reorganization of neuronal activity patterns. Remarkably, these findings mirror resting-state brain FC in SZ patients, laying the groundwork for future studies among such different spatiotemporal domains, as are brains and neurons, in both health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3