Carbon Fiber Electrodes for Intracellular Recording and Stimulation

Author:

Huan YuORCID,Gill Jeffrey P.ORCID,Fritzinger Johanna B.ORCID,Patel Paras R.ORCID,Richie Julianna M.ORCID,Valle Elena dellaORCID,Weiland James D.ORCID,Chestek Cynthia A.ORCID,Chiel Hillel J.ORCID

Abstract

AbstractTo understand neural circuit dynamics, it is critical to manipulate and record from many neurons, ideally at the single neuron level. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems, rather than on neuronal cultures. Carbon fiber electrodes (CFEs) are 8 micron-diameter electrodes that can be organized into arrays with pitches as low as 80 µm. They have been shown to have good signal-to-noise ratios (SNRs) and are capable of stable extracellular recording during both acute and chronic implantation in vivo in neural tissue such as rat motor cortex. Given the small fiber size, it is possible that they could be used in arrays for intracellular stimulation. We tested this using the large identified and electrically compact neurons of the marine mollusk Aplysia californica. The cell bodies of neurons in Aplysia range in size from 30 to over 250 µm. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron’s cell body with both electrodes and connecting them to a DC coupled amplifier. We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular as shown by recording from the same neuron using a glass microelectrode. Stimulating through CFEs coated with platinum-iridium had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. Thus, the stability for multi-channel recording and the ability to stimulate and record intracellularly make CFEs a powerful new technology for studying neural circuit dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3