Hematopoietic-SLC37A2 deficiency accelerates atherosclerosis in LDL receptor-deficient mice

Author:

Zhao Qingxia,Wang Zhan,Meyers Allison K.,Madenspacher Jennifer,Zabalawi Manal,Boudyguina Elena,Hsu Fang-Chi,McCall Charles M.,Furdui Cristina M.,Parks John S.,Fessler Michael B.,Zhu Xuewei

Abstract

AbstractMacrophages play a central role in the pathogenesis of atherosclerosis. Our previous study demonstrated that solute carrier family 37 member 2 (SLC37A2), an endoplasmic reticulum-anchored phosphate-linked glucose-6-phosphate transporter, negatively regulates macrophage Toll-like receptor activation by fine-tuning glycolytic reprogramming in vitro. Whether macrophage SLC37A2 impacts in vivo macrophage inflammation and atherosclerosis under hyperlipidemic conditions is unknown. We generated hematopoietic cell-specific SLC37A2 knockout and control mice in C57Bl/6 Ldlr-/- mice by bone marrow transplantation. Hematopoietic-specific SLC37A2 deletion in Ldlr-/- mice increased plasma lipid concentrations 12-16 wks of Western diet induction, attenuated macrophage anti-inflammatory responses, and resulted in more atherosclerosis compared to Ldlr-/- mice transplanted with wild type bone marrow. Aortic root intimal area was inversely correlated with plasma IL-10 levels, but not total cholesterol concentrations, suggesting inflammation but not plasma cholesterol was responsible for increased atherosclerosis in bone marrow SLC37A2-deficient mice. Our in vitro study demonstrated that SLC37A2 deficiency impaired IL-4-induced macrophage activation, independently of glycolysis or mitochondrial respiration. Importantly, SLC37A2 deficiency impaired apoptotic cell-induced glycolysis, subsequently attenuating IL-10 production. Our study suggests that SLC37A2 expression is required to support alternative macrophage activation in vitro and in vivo. In vivo disruption of hematopoietic SLC37A2 accelerates atherosclerosis under hyperlipidemic pro-atherogenic conditions.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Monocytes and macrophages in atherogenesis;Current opinion in lipidology,2019

2. Atherosclerosis: cell biology and lipoproteins;Current opinion in lipidology,2020

3. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities;Nature reviews Cardiology,2019

4. How Far We Have Come, How Far We Have Yet to Go in Atherosclerosis Research;Circulation research,2020

5. Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis;Frontiers in pharmacology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3