Abstract
AbstractCajal bodies (CBs) are ubiquitous nuclear membraneless organelles (MLOs) that promote efficient biogenesis of RNA-protein complexes. Depletion of the CB scaffolding protein coilin is lethal for vertebrate embryogenesis, making CBs a strong model for understanding the structure and function of MLOs. Although it is assumed that CBs form through biomolecular condensation, the biochemical and biophysical principles that govern CB dynamics have eluded study. Here, we identify features of the coilin protein that drive CB assembly and shape. Focusing on coilin’s N-terminal domain (NTD), we discovered its unexpected capacity for oligomerization in vivo. Single amino acid mutational analysis of coilin revealed distinct molecular interactions required for oligomerization and binding to the Nopp140 ligand, which facilitates CB assembly. We demonstrate that the intrinsically disordered regions of Nopp140 have substantial condensation properties and suggest that Nopp140 binding thereby remodels stable coilin oligomers to form a particle that recruits other functional components.
Publisher
Cold Spring Harbor Laboratory