Inhibition of the H3K27 demethylase UTX enhances the epigenetic silencing of HIV proviruses and induces HIV-1 DNA hypermethylation but fails to permanently block HIV reactivation

Author:

Nguyen Kien,Dobrowolski Curtis,Shukla Meenakshi,Cho Won-Kyung,Karn Jonathan

Abstract

AbstractOne strategy for a functional cure of HIV-1 is “block and lock”, which seeks to permanently suppress the rebound of quiescent HIV-1 by epigenetic silencing. For the HIV LTR, both histone 3 lysine 27 tri-methylation (H3K27me3) and DNA methylation are associated with viral suppression, while H3K4 tri-methylation (H3K4me3) is correlated with viral expression. However, H3K27me3 is readily reversed upon activation of T-cells through the T-cell receptor. To suppress latent HIV-1 in a stable fashion, we depleted the expression or inhibited the activity of UTX/KDM6A, the major H3K27 demethylase, and investigated its impact on latent HIV-1 reactivation in T cells. Inhibition of UTX dramatically enhanced H3K27me3 levels at the HIV LTR and were associated with increased DNA methylation. In latently infected cells from patients, GSK-J4, which is a potent dual inhibitor of the H3K27me3/me2-demethylases JMJD3/KDM6B and UTX/KDM6A, effectively suppressed the reactivation of latent HIV-1 and induced DNA methylation at specific sites in the 5’LTR of latent HIV-1 by the enhanced recruitment of DNMT3A to HIV-1. Nonetheless, suppression of HIV-1 through epigenetic silencing required the continued treatment with GSK-J4 and was rapidly reversed after removal of the drug. Thus, epigenetic silencing by itself appears to be insufficient to permanently silence HIV-1 proviral transcription.Author SummaryThe “block and lock” strategy for a functional HIV-1 cure is based on the premise that permanent inactivation of the HIV-1 can be achieved by epigenetic silencing of the proviral DNA. For cellular genes, long-term silencing is achieved during cell differentiation by the induction of specific epigenetic modifications involving histone and DNA methylation. During HIV-1 silencing, histone methylation and DNA methylation are observed, but both sets of modifications can be reversed upon activation of T-cells through the T-cell receptor or potent latency reversing agents. In an attempt to enhance silencing of HIV-1 transcription, we used an inhibitor of H3K27 demethylases to increase H3K27 methylation. This in turn led to enhanced DNA methylation of HIV-1. Unfortunately, although the treatment effectively silenced HIV-1 and prevented viral reactivation, the silencing effects were short-lived and quickly reversed after removal of the drug.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3