Abstract
ABSTRACTPseudomonas species are ubiquitous in nature and include numerous medically, agriculturally and technologically beneficial strains of which the interspecific interactions are of great interest for biotechnologies. Specifically, co-cultures containing Pseudomonas stutzeri have been used for bioremediation, biocontrol, aquaculture management and wastewater denitrification. Furthermore, the use of P. stutzeri biofilms, in combination with consortia based approaches, may offer advantages for these processes. Understanding the interspecific interaction within biofilm co-cultures or consortia provides a means for improvement of current technologies. However, the investigation of biofilm based consortia has been limited. We present an adaptable and scalable method for the analysis of macroscopic interactions (colony morphology, inhibition and invasion) between colony forming bacterial strains using an automated printing method followed by analysis of the genes and metabolites involved in the interactions. Using Biofilm Interaction Mapping and Analysis (BIMA), these interactions were investigated between P. stutzeri strain RCH2, a denitrifier isolated from chromium (VI) contaminated soil, and thirteen other species of pseudomonas isolated from non-contaminated soil. The metabolites and genes associated with both active co-culture growth and inhibitory growth were investigated using mass spectrometry based metabolomics and mutant fitness profiling of a DNA-barcoded mutant library. One interaction partner, Pseudomonas fluorescens N1B4 was selected for mutant fitness profiling; with this approach four genes of importance were identified and the effects on interactions were evaluated with deletion mutants and metabolomics.IMPORTANCEThe Biofilm Interaction Mapping and Analysis (BIMA) methodology provides a way to rapidly screen for positive and negative interspecific interactions, followed by an analysis of the genes and metabolites that may be involved. Knowledge of these may offer opportunities for engineered strains with improved function in biotechnology systems. P. stutzeri, an organism with wide-spread utilization in consortia based biotechnologies, was used to demonstrate the utility of this approach. Where little is known about the factors influencing biofilm based interactions, elucidation of the genes and metabolites involved allows for better control of the system for improved function or yield.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献