Endogenous auxin directs development of embryonic stem cells into somatic proembryos in Arabidopsis

Author:

Karami Omid,Philipsen Cheryl,Rahimi Arezoo,Nurillah Annisa Ratna,Boutilier KimORCID,Offringa RemkoORCID

Abstract

AbstractSomatic embryogenesis (SE) is the process by which embryos develop from in vitro cultured vegetative tissue explants. The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is widely used for SE induction, but SE can also be induced by overexpression of specific transcription factors, such as AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15). 2,4-D and AHL15 both trigger the biosynthesis of the natural auxin indole-3-acetic acid (IAA). However, the role of this endogenously produced auxin in SE is yet not well understood. In this study we show that the induction of embryonic stem cells from explants does not require IAA biosynthesis, whereas an increase in IAA levels is essential to maintain embryo identity and for embryo formation from these stem cells. Further analysis showed that YUCCA (YUC) genes involved in the IPyA auxin biosynthesis pathway are up-regulated in embryo-forming tissues. Chemical inhibition of the IPyA pathway significantly reduced or completely inhibited the formation of somatic embryos in both 2,4-D-and AHL15-dependent systems. In the latter system, SE could be restored by exogenous IAA application, confirming that the biosynthesis-mediated increase in IAA levels is important. Our analyses also showed that PIN1 and AUX1 are the major auxin carriers that determine respectively auxin efflux and influx during SE. This auxin transport machinery is required for the proper transition of embryonic cells to proembryos and, later, for correct cell fate specification and differentiation. Taken together, our results indicate that auxin biosynthesis in conjunction with its polar transport are required during SE for multicellular somatic proembryo development and differentiation.One sentence summarySomatic embryogenesis in Arabidopsis requires auxin biosynthesis and polar auxin transport only after the acquisition of embryonic competence for somatic proembryo development and differentiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3