Genomic characterization of a pathogenic isolate of Saccharomyces cerevisiae reveals an extensive and dynamic landscape of structural variation

Author:

Heasley Lydia R.,Argueso Juan LucasORCID

Abstract

AbstractThe budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a critical resource for the study of numerous facets of eukaryotic biology. Recently, the analysis of whole genome sequencing data from over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation the exists within the species. Single molecule long read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a pathogenic isolate of S. cerevisiae, YJM311. We used long read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 diploid genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can define the structural architectures of S. cerevisiae isolates. It is our hope that through continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, we will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural diversity, and evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3