ATR facilitates the degradation of Api5 through the ubiquitin-proteasome pathway via FBXW2 to regulate apoptosis upon DNA damage

Author:

Sharma Virender KumarORCID,Islam SehbanulORCID,Borkar Janhavi,Mishra Sudiksha,Panda Debiprasad,Santra Manas KORCID,Lahiri MayurikaORCID

Abstract

SummaryApoptosis inhibitor 5 (Api5) is an inhibitor of apoptosis, which is found to be upregulated in several cancers and promotes invasion as well as metastasis. Over-expression of Api5 is positively co-related with poor survival of cancers and inhibition of DNA damage induced apoptosis in cancerous cells. Acetylation at lysine 251 (K251) on Api5 facilitates the stability of the protein and thus functionally provides resistance to cancer cells against chemotherapeutic or anti-cancerous agents. However, the regulation of Api5 upon DNA damage is not yet known. In this study, we demonstrate that Api5 undergoes degradation following DNA damage via the ubiquitin-proteasome system. Upon DNA damage, ATR was observed to phosphorylate Api5 at serine 138 which led to the cytoplasmic localisation of Api5. The E3-ubiquitin ligase, SCF-FBXW2 ubiquitinates Api5 leading to its proteasomal degradation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3