Abstract
ABSTRACTOogenesis involves meiosis and oocyte maturation. Both processes rely on mechanical forces (Lee et al., 2015; Nagamatsu et al., 2019; Rog and Dernburg, 2015; Sato et al., 2009; Tsatskis et al., 2020; Wynne et al., 2012), which can be transduced from the cytoskeleton to the nuclear envelope (NE) through linker of nucleoskeleton and cytoskeleton (LINC) complexes (Burke, 2018; Chang et al., 2015; Fan et al., 2020; Link et al., 2014). Gametes must protect their genomes from damage in this mechanically stressful environment. In C. elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to nuclear collapse. Here we deploy the auxin-inducible degradation system to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein and a LINC complex comprised of SUN-1 and ZYG-12, which assumes polarized distribution at the NE in response to dynein-mediated forces. We also show that the lamin meshwork works in parallel with other inner nuclear membrane (INM) proteins to counteract mechanical stress at the NE during oogenesis. We speculate that a similar network may protect oocyte integrity during the long arrest period in mammals.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献