Predicted responses to selection across the climatic range of a rainforest Drosophila without local adaptation: environmental variation limits trait divergence along ecological gradients

Author:

O’Brien Eleanor K.ORCID,Higgie Megan,Saxon Andrew D.ORCID,Hoffmann Ary A.,Bridle Jon R.

Abstract

AbstractEvolutionary responses to environmental change require heritable variation in traits under selection. Both heritability and selection vary with the environment, and may also covary, meaning that environmental variation can be an important source of evolutionary constraint. However, estimates of heritability and selection along environmental gradients in the field are rare. We estimated environmental variation in selection on three traits (cold tolerance, heat tolerance and wing size) of the rainforest fly Drosophila birchii by transplanting flies in cages along two elevational gradients in north-east Queensland, Australia, and calculating the genetic covariance of trait values with cage productivity at each elevation. We estimated heritability of each trait from laboratory crosses, and environmental variation in heritability of wing size from the correlation of mothers and daughters in cages at each elevation. We then used estimates of selection and heritability to predict selection responses along the elevation gradients. Laboratory assays revealed low-moderate genetic variation in all traits and low covariation among traits, suggesting the potential for a strong response to selection. Estimated selection responses predicted divergence of cold tolerance with elevation at one gradient. However, this was not observed at either gradient, with no difference between high and low elevation populations for this trait. Despite substantial variation in heritability (and predicted selection response) of wing size, this appeared random with respect to elevation, preventing overall divergence and suggesting that local environmental variation constrains evolutionary responses along natural ecological gradients. Such an effect, if widespread, may significantly slow evolutionary responses to environmental change.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3