Gene Expression Risk Scores for COVID-19 Illness Severity

Author:

Peterson Derick R,Baran Andrea M,Bhattacharya SoumyaroopORCID,Branche Angela R,Croft Daniel P,Corbett Anthony M,Walsh Edward E,Falsey Ann R,Mariani Thomas J

Abstract

AbstractBackgroundThe correlates of COVID-19 illness severity following infection with SARS-Coronavirus 2 (SARS-CoV-2) are incompletely understood.MethodsWe assessed peripheral blood gene expression in 53 adults with confirmed SARS-CoV-2-infection clinically adjudicated as having mild, moderate or severe disease. Supervised principal components analysis was used to build a weighted gene expression risk score (WGERS) to discriminate between severe and non-severe COVID.ResultsGene expression patterns in participants with mild and moderate illness were similar, but significantly different from severe illness. When comparing severe versus non-severe illness, we identified >4000 genes differentially expressed (FDR<0.05). Biological pathways increased in severe COVID-19 were associated with platelet activation and coagulation, and those significantly decreased with T cell signaling and differentiation. A WGERS based on 18 genes distinguished severe illness in our training cohort (cross-validated ROC-AUC=0.98), and need for intensive care in an independent cohort (ROC-AUC=0.85). Dichotomizing the WGERS yielded 100% sensitivity and 85% specificity for classifying severe illness in our training cohort, and 84% sensitivity and 74% specificity for defining the need for intensive care in the validation cohort.ConclusionThese data suggest that gene expression classifiers may provide clinical utility as predictors of COVID-19 illness severity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3