Abstract
ABSTRACTMany bacteria form mats at the air-liquid interface of static microcosms. These structures typically involve the secretion of exopolysaccharide(s), the production of which is often controlled by the secondary messenger c-di-GMP. Mechanisms of mat formation have been particularly well characterized in Pseudomonas fluorescens SBW25; mutations that lead to an increase in c-di-GMP production by diguanylate cyclases (WspR, AwsR, or MwsR) result in the secretion of cellulose, and mat formation. Here, we characterize and compare mat formation in two close relatives of SBW25: Pseudomonas simiae PICF7 and Pseudomonas fluorescens A506. We find that PICF7 – the strain more closely related to SBW25 – can form mats through mutations affecting the activity of the same three diguanylate cyclases as SBW25. However, instead of cellulose, these mutations activate the production of the Pel exopolysaccharide. We also provide evidence for at least two further – as yet uncharacterized – routes to PICF7 mat formation. P. fluorescens A506, while retaining the same mutational routes to mat formation as SBW25 and PICF7, forms mats by a semi-heritable mechanism that likely culminates in Pga and/or Psl production. Overall, our results demonstrate a high level of evolutionary flexibility in the molecular and structural routes to mat formation, even among close relatives.
Publisher
Cold Spring Harbor Laboratory