Selection for non-specific adhesion is a driver of FimH evolution increasing Escherichia coli biofilm capacity

Author:

Yoshida Mari,Thiriet-Rupert Stanislas,Mayer Leonie,Beloin ChristopheORCID,Ghigo Jean-MarcORCID

Abstract

ABSTRACTBacterial interactions with surfaces rely on the coordinated expression and interplay of surface exposed adhesion factors. However, how bacteria dynamically modulate their vast repertoire of adhesins to achieve surface colonization is not yet well-understood. We used experimental evolution and positive selection for improved adhesion to investigate how an initially poorly adherent Escherichia coli strain increased its adhesion capacities to abiotic surfaces. We showed that all identified evolved clones acquired mutations located almost exclusively in the lectin domain of fimH, the gene coding for the α-D-mannose-specific tip adhesin of type 1 fimbriae. While most of these fimH mutants showed reduced mannose- binding ability, they all displayed enhanced binding to abiotic surfaces, indicating a trade-off between FimH-mediated specific and non-specific adhesion properties. Several of the identified mutations were already reported in FimH lectin domain of pathogenic and environmental E. coli, suggesting that, beyond patho-adaptation, FimH microevolution favoring non-specific surface adhesion could constitute a selective advantage for natural E. coli isolates. Consistently, although E. coli deleted for the fim operon still evolves an increased adhesion capacity, mutants selected in the Δfim background are outcompeted by fimH mutants revealing clonal interference for adhesion. Our study therefore provides insights into the plasticity of E. coli adhesion potential and shows that evolution of type 1 fimbriae is a major driver of the adaptation of natural E. coli to colonization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3