Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells

Author:

Shridhar Sameera,Mishra PoonamORCID,Narayanan RishikeshORCID

Abstract

ABSTRACTNeurons and synapses manifest pronounced variability in the amount of plasticity induced by identical activity patterns. The mechanisms underlying such plasticity heterogeneity, implicated in context-specific resource allocation during encoding, have remained unexplored. Here, we employed a systematic, unbiased, and physiologically constrained search to identify the mechanisms behind plasticity heterogeneity in dentate gyrus granule cells. We found that each of intrinsic, synaptic, and structural heterogeneities independently yielded heterogeneous plasticity profiles obtained with two different induction protocols. However, prior predictions about strong relationships between neuronal intrinsic excitability and plasticity emerged only when adult-neurogenesis-induced structural heterogeneities were accounted for. Strikingly, despite the concomitant expression of heterogeneities in structural, synaptic, and intrinsic neuronal properties, similar plasticity profiles were attainable through synergistic interactions among these heterogeneities. Importantly, consequent to strong relationships with intrinsic excitability measurements, we found that synaptic plasticity in the physiological range was achieved in immature cells despite their electrophysiologically-observed weak synaptic strengths. Together, our analyses unveil the dominance of neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in granule cells. Broadly, these analyses emphasize that the mechanistic origins of and the implications for plasticity heterogeneities need quantitative characterization across brain regions, particularly focusing on context-specific encoding of learned behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3