Immunopeptidomic analysis of influenza A virus infected human tissues identifies internal proteins as a rich source of HLA ligands

Author:

Nicholas BenORCID,Bailey AlistairORCID,Staples Karl JORCID,Wilkinson TomORCID,Elliott TimORCID,Skipp PaulORCID

Abstract

AbstractCD8+ and CD4+ T cells provide cell-mediated cross-protection against multiple influenza strains by recognising epitopes bound as peptides to human leukocyte antigen (HLA) class I and -II molecules respectively. Two challenges in identifying the immunodominant epitopes needed to generate a universal T cell influenza vaccine are: A lack of cell models susceptible to influenza infection which present population-prevalent HLA allotypes, and an absence of a reliable in-vitro method of identifying class II HLA peptides. Here we present a mass spectrometry-based proteomics strategy for identifying viral peptides derived from the A/H3N2/X31 and A/H3N2/Wisconsin/67/2005 strains of influenza. We compared the HLA-I and -II immunopeptidomes presented by ex-vivo influenza challenged human lung tissues. We then compared these with directly infected immortalised macrophage-like cell line (THP1) and primary dendritic cells fed apoptotic influenza-infected respiratory epithelial cells. In each of the three experimental conditions we identified novel influenza class I and II HLA peptides with motifs specific for the host allotype. Ex-vivo infected lung tissues yielded few class-II HLA peptides despite significant numbers of alveolar macrophages, including directly infected ones, present within the tissues. THP1 cells presented HLA-I viral peptides derived predominantly from internal proteins. Primary dendritic cells presented predominantly viral envelope-derived HLA class II peptides following phagocytosis of apoptotic infected cells. The most frequent viral source protein for HLA-I and -II was matrix 1 protein (M1). This work confirms that internal influenza proteins, particularly M1, are a rich source of CD4+ and CD8+ T cell epitopes. Moreover, we demonstrate the utility of two ex-vivo fully human infection models which enable direct HLA-I and -II immunopeptide identification without significant viral tropism limitations. Application of this epitope discovery strategy in a clinical setting will provide more certainty in rational vaccine design against influenza and other emergent viruses.Author SummaryInfluenza infections present a significant global health challenge. High rates of mutation require reformulation of vaccines annually. Vaccines are designed to induce antibody responses to the surface proteins of the influenza virus, but the contribution of T cells to overall immunity is unclear. Here, we used several totally human laboratory models to show how the viral proteins are presented to the T cells to induce immunity. We found that CD8 T cells, which kill infected cells, and CD4 T cells which support the CD8 T cells as well as the antibody-producing B cells, mainly see proteins from inside the viral particle, not the surface ones which are targeted by antibodies. These internal viral proteins are more similar between different viral strains than the surface proteins, and therefore suggest that vaccines designed to induce T cell responses could be better protective if they target internal viral proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3