Primate deep conserved noncoding sequences and non-coding RNA: their possible relatedness to brain and Central Nervous System

Author:

Hettiarachchi Nilmini

Abstract

AbstractBackgroundConserved non coding Sequences (CNSs) are extensively studied for their regulatory properties and functional importance to organisms. Many features such as location, proximity to the likely target gene, lineage specificity, functionality of likely target genes, and nucleotide composition of these sequences have been investigated, thus have provided very meaningful insight to signify underlying evolutionary importance of these elements. Also thorough investigation around how to assign function to non-coding regions of eukaryote genomes is another area that is studied. On one hand evolutionary analyses, including signatures of selection or conservation which can indicate the presence of constraint, suggesting that sequences that are evolving non-neutrally are candidates for functionality. On the other hand evidence that is based on experimental profiling of transcription, methylation, histone modifications and chromatin state. While these types of data are very important and are associated with function in most cases, this is not always the case. Evolutionary conservation though highly conservative which mostly considers elements identifiable in more than one species, is still being used as the initial guideline in investigating function via experiments. If we had an understanding of the experimental profiles of conserved non-coding regions as there may be patterns that are often associated these potentially functional elements it may help to construed functionality of conserved non coding regions easily.ResultsIn an effort to try integrate experimental profile data, we investigated evidence of expression of conserved noncoding sequences (CNSs). For CNSs from ten primates, we assessed transcription, histone modifications, level of evolutionary constraint or accelerated evolution, and assessed possible target genes, tissue expression profiles of likely target genes (as some CNSs may be enhancers, and may be ncRNAs that interact directly with mRNA) and clustering patterns of CNSs. In total we found 153475 CNSs conserved across all ten primates. Of these 59,870 were overlapping non coding regions of ncRNA genes. H3K4Me1 marks (often associated with active enhancers) were highly correlated with CNSs whereas H4K20Me1 (linked to, e.g. DNA damage repair) had high correlation with conserved ncRNA regions (ncRNA-gene-CEs). Both CNSs and conserved ncRNA showed evidence of being under purifying selection. The CNSs in our dataset overall exhibited lower allele frequencies, consistent with higher levels of evolutionary constraint. We also found that CNSs and ncRNA-gene-CEs produce mutually exclusive groups. The analyses also suggest that both types of conserved elements have undergone waves of accelerated evolution, which we speculate may indicate changes in regulatory requirements following divergence events. Finally, we find that likely target genes for hominoidae, primate and mammalian-specific CNSs and ncRNA-gene-CEs are predominantly associated with brain-related function in humans.ConclusionThe deep conserved primate CNSs and ncRNA gene-CEs signify functional importance suggesting ongoing recruitment of these elements into brain-related functions, consistent with King and Wilson’s hypothesis that regulatory changes may account for rapid changes in phenotype among primates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3