Suppression of fibrillation consisting of stable rotors by periodic pacing

Author:

Buran Pavel,Niedermayer Thomas,Bär Markus

Abstract

Recent experimental studies have shown that a sequence of low-energy electrical far-field pulses is able to terminate fibrillation with substantially lower per-pulse energy than a single high-energy electric shock (see S. Luther et al. Nature 475 (7355), 235-239). During this low-energy antifibrillation pacing (LEAP) procedure only tissue near sufficiently large conduction heterogeneities, such as large coronary arteries, is activated. In order to understand the mechanism behind LEAP, We have carried out a statistical study of resetting a medium filled by one or more stable spirals (“rotors”) in a two-dimensional electrophysiological model of cardiac tissue perforated by blood vessels to the resting state (“defibrillation”). We found the highest success probabilities for this defibrillation for underdrive pacing with periods 10 – 20 percent larger than the dominant period of the stable rotors in the unperturbed dynamics. If a sufficiently large number pulses is applied and an optimal pacing period chosen, the energy per pulse required for successful defibrillation is about 75 - 80 percent lower than the energy needed for single-shock defibrillation. Optimal conditions to control and suppress fibrillation based on stable rotors, hence, are similar to the ones in found for the case of an electrophysiological model displaying spatiotemporal chaos (“electrical turbulence”) in an earlier study (see P. Buran et al. Chaos 27, 113110 (2017)). The optimal pacing period is found to increase with increasing strength of the electrical field strength used in the model. The success probability also increases strongly until the fourth or fifth pulse administered, which is strongly correlated to an observed increase of the fraction of re-excitable tissue with each subsequent pulse. Monitoring the fraction of excitable tissue in the model as key quantity of the excitable medium, moreover, enabled us to successfully predict the optimal pacing period for defibrillation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3