Deep graph learning of inter-protein contacts

Author:

Xie Ziwei,Xu JinboORCID

Abstract

AbstractMotivationInter-protein (interfacial) contact prediction is very useful for in silico structural characterization of protein-protein interactions. Although deep learning has been applied to this problem, its accuracy is not as good as intra-protein contact prediction.ResultsWe propose a new deep learning method GLINTER (Graph Learning of INTER-protein contacts) for interfacial contact prediction of dimers, leveraging a rotational invariant representation of protein tertiary structures and a pretrained language model of multiple sequence alignments (MSAs). Tested on the 13th and 14th CASP-CAPRI datasets, the average top L/10 precision achieved by GLINTER is 54.35% on the homodimers and 51.56% on all the dimers, much higher than 30.43% obtained by the latest deep learning method DeepHomo on the homodimers and 14.69% obtained by BIPSPI on all the dimers. Our experiments show that GLINTER-predicted contacts help improve selection of docking decoys.Contactjinboxu@gmail.com

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3