VaxArray Immunoassay for the Multiplexed Quantification of Poliovirus D-Antigen

Author:

Dawson Erica D.,Taylor Amber W.,Johnson James E.,Hu TianjingORCID,McCormick Caitlin,Thomas Keely N.,Gao Rachel Y.ORCID,Wahid RahnumaORCID,Mahmood KutubORCID,Rowlen Kathy L.

Abstract

ABSTRACTNext generation poliovirus vaccines are critical to reaching global poliovirus eradication goals. Recent efforts have focused on creating inactivated vaccines using attenuated Sabin strains that maintain patient safety benefits and immunogenicity of conventional inactivated vaccines while increasing manufacturing safety and lowering production costs, and on developing novel oral vaccines using modified Sabin strains that provide critical mucosal immunity but are further attenuated to minimize risk of reversion to neurovirulence. In addition, there is a push to improve the analytical tools for poliovirus vaccine characterization. Conventional and Sabin inactivated poliovirus vaccines typically rely on standard plate-based ELISA as in vitro D-antigen potency assays in combination with WHO international standards as calibrants. While widely utilized, the current D-antigen ELISA assays have a long time to result (up to 72 hours), can suffer from lab-to-lab inconsistency due to non-standardized protocols and reagents, and are inherently singleplex. For D-antigen quantitation, we have developed the VaxArray Polio Assay Kit, a multiplexed, microarray-based immunoassay that uses poliovirus-specific human monoclonal antibodies currently under consideration as standardized reagents for characterizing inactivated Sabin and Salk vaccines. The VaxArray assay can simultaneously quantify all 3 poliovirus serotypes with a time to result of less than 3 hours. Here we demonstrate that the assay has limits of quantification suitable for both bioprocess samples and final vaccines, excellent reproducibility and precision, and improved accuracy over an analogous plate-based ELISA. The assay is suitable for adjuvanted combination vaccines, as common vaccine additives and crude matrices do not interfere with quantification, and is intended as a high throughput, standardized quantitation tool to aid inactivated poliovirus vaccine manufacturers in streamlining vaccine development and manufacturing, aiding the global polio eradication effort.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. A Brief History of Vaccines Against Polio;Indian Pediatrics,2016

2. Ending Use of Oral Poliovirus Vaccine – A Difficult Move in the Polio Endgame;New England Journal of Medicine,2018

3. Polio: WHO Declares Type 3 Poliovirus Eradicated After 31 Year Campaign;BMJ,2019

4. Final frontiers of the polio eradication endgame

5. Sabin Strain Inactivated Polio Vaccine for the Polio Endgame;J Inf Dis,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3