RRNPP_detector: a tool to detect RRNPP quorum sensing systems in chromosomes, plasmids and phages of gram-positive bacteria

Author:

Bernard CharlesORCID,Li YanyanORCID,Bapteste EricORCID,Lopez PhilippeORCID

Abstract

ABSTRACTGram-positive bacteria (e.g. Firmicutes) and their mobile genetic elements (plasmids, bacteriophages) encode peptide-based quorum sensing systems (QSSs) that regulate behavioral transitions in a density-dependent manner. In their simplest form, termed “RRNPP”, these QSSs are composed of two adjacent genes: a communication propeptide and its cognate intracellular receptor. Despite the prime importance of RRNPP QSSs in the regulation of key biological pathways such as virulence, sporulation or biofilm formation in bacteria, conjugation in plasmids or lysogeny in temperate bacteriophages, no tools exist to predict their presence in target genomes/mobilomes. Here, we introduce RRNPP_detector, a software to predict RRNPP QSSs in chromosomes, plasmids and bacteriophages of gram-positive bacteria, available at https://github.com/TeamAIRE/RRNPP_detector. RRNPP_detector does not rely on homology searches but on a signature of multiple criteria, which are common between distinct families of experimentally-validated RRNPP QSSs. Because this signature is generic while specific to the canonical mechanism of RRNPP quorum sensing, it enables the discovery of novel RRNPP QSSs and thus of novel “languages” of biocommunication. Applying RRNPP_detector against complete genomes of viruses and Firmicutes available on the NCBI, we report a potential 7.5-fold expansion of RRNPP QSS diversity, alternative secretion-modes for certain candidate QSS propeptides, ‘bilingual’ bacteriophages and plasmids, as well as predicted chromosomal and plasmidic Biosynthetic-Gene-Clusters regulated by QSSs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3