Prior expectations in visual speed perception predict encoding characteristics of neurons in area MT

Author:

Zhang Ling-QiORCID,Stocker Alan A.ORCID

Abstract

AbstractBayesian inference provides an elegant theoretical framework for understanding the characteristic biases and discrimination thresholds in visual speed perception. However, the framework is difficult to validate due to its flexibility and the fact that suitable constraints on the structure of the sensory uncertainty have been missing. Here, we demonstrate that a Bayesian observer model constrained by efficient coding not only well explains human visual speed perception but also provides an accurate quantitative account of the tuning characteristics of neurons known for rep-resenting visual speed. Specifically, we found that the population coding accuracy for visual speed in area MT (“neural prior”) is precisely predicted by the power-law, slow-speed prior extracted from fitting the Bayesian model to psychophysical data (“behavioral prior”) to the point that the two priors are indistinguishable in a cross-validation model comparison. Our results demonstrate a quantitative validation of the Bayesian observer model constrained by efficient coding at both the behavioral and neural levels.Significance StatementStatistical regularities of the environment play an important role in shaping both neural representations and perceptual behavior. Most previous works addressed these two aspects independently. Here we present a quantitative validation of a theoretical framework that makes joint predictions for neural coding and behavior, based on the assumption that neural representations of sensory information are efficient but also optimally used in generating a percept. Specifically, we demonstrate that the neural tuning characteristics for visual speed in brain area MT are precisely predicted by the statistical prior expectations extracted from psychophysical data. As such, our results provide a normative link between perceptual behavior and the neural representation of sensory information in the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3