Homeobox transcription factor MNX1 is crucial for restraining the expression of pan-neuronal genes in motor neurons

Author:

Sun Ming-anORCID,Ralls Sherry,Wu Warren,Demmerle Justin,Jiang Jiayao,Miller Carson,Wolf Gernot,Macfarlan Todd S.

Abstract

AbstractMotor neurons (MNs) control muscle movement and are essential for breathing, walking and fine motor skills. Motor Neuron and Pancreas Homeobox 1 (MNX1) has long been recognized as a key marker of the MN lineage. Deficiency of the Mnx1 gene in mice results in early postnatal lethality – likely by causing abnormal MN development and respiratory malfunction. However, the genome-wide targets and exact regulatory function of Mnx1 in MNs remains unresolved. Using an in vitro model for efficient MN induction from mouse embryonic stem cells, we identified about six thousand MNX1-bound loci, of which half are conserved enhancers co-bound by the core MN-inducing factors ISL1 and LHX3, while the other half are promoters for housekeeping-like genes. Despite its widespread binding, disruption of Mnx1 affects the activity of only a few dozen MNX1-bound loci, and causes mis-regulation of about one hundred genes, the majority of which are up-regulated pan-neuronal genes with relatively higher expression in the brain compared to MNs. Integration of genome-wide binding, transcriptomic and epigenomic data in the wild-type and Mnx1-disrupted MNs predicts that Pbx3 and Pou6f2 are two putative direct targets of MNX1, and both are homeobox transcription factors highly expressed in the central nervous system. Our results suggest that MNX1 is crucial for restraining the expression of many pan-neuronal genes in MNs, likely in an indirect fashion. Further, the rarity of direct targets in contrast to the widespread binding of MNX1 reflects a distinctive mode of transcriptional regulation by homeobox transcriptional factors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3