GC content but not nucleosome positioning directly contributes to intron-splicing efficiency in Paramecium

Author:

Gnan StefanoORCID,Matelot Mélody,Weiman Marion,Arnaiz OlivierORCID,Guérin FrédéricORCID,Sperling LindaORCID,Bétermier MireilleORCID,Thermes ClaudeORCID,Chen Chun-LongORCID,Duharcourt SandraORCID

Abstract

ABSTRACTEukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the >90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur co-transcriptionally and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We showed that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of ∼151 bp, amongst the smallest periodicities reported. Our analysis revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint to locate introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for the nonsense-mediated decay effectors, we showed that introns located at the edge of nucleosomes display higher splicing efficiency than those at the centre. However, multiple regression analysis indicated that the GC content, rather than nucleosome positioning, directly contributes to intron splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning and intron evolution in Paramecium.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3